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EFFECTIVE PROPERTIES OF MULTICOMPONENT ELASTOPLASTIC COMPOSITE MATERIALS* 

L.A. SARAYEV 

The present paper generalizes the results obtained in /l/ to the case of 
an arbitrary number of elastic and elastoplastic components of the medium, 
by considering the elastoplastic behaviour of a multicomponent composite 
materials (CM). 

1. Consider an elastoplastic, microinhomogeneous mediumconsistingofn different isotropic 
components joined to each other with perfect adhesion. Let the first m components be elasto- 
plastic, and the remaining n--m components be perfectly elastic. Hooke's law for such a CM 
has the form 

08) = 2p, (83) - eyj(*)) + 6ijl&L (s = 1 ,Z,..., m) (1.') 

Here c+ eij, eq are the components of the stress, total and plastic deformation tensors, 

P's? h, are the Lamk parameters of the component materials, and the plastic deformations satisfy 
the condition of incompressibility e&=0. The plastic properties of the elastoplastic 
components are described in terms of the Mises yield surface (k, are the yield points) 

sijSij=k,a(s=1,2,...,m), Sij = bij - l/06ij5pp 

The structure of CM can be described by a set of random indicator functions of the 
coordinates x1 (r), xg (r). . . ., x, (r). Every one of these functions x$(r) is equal to unity on the 
set of points of,the s-th component, and to zero outside this set. Using these functions we 
can write the local Hooke's law in the form 

where 
Gij (I) = 2p (r) (Eij (r) - eij' (r)) + hijh W) e,(r) (1.21 

IL(r) = i &x,(r)? 
II 

k(r) = 2 Q,(r) 
a=1 s=1 

xa(r)eTj(r)=O (s=m+i,m+2,...,n) 

All functions x8(r), stress tensors, total and plastic deformation tensors are assumed 
to be statistically homogeneous and ergodically random fields, and their expectations are 
replaced by the following quantities /2/ averaged over the component volumes V, and over the 
whole volume V of the medium: 

Supplementing relation (1.2) with the equations of equilibrium cij,j(r)=O and the Cauchy 
formulas 2ei/(r)= u+,j(r)+ uj,i(r) connecting the components of the total deformation tensor with 
the components of the displacement vector ui(r), we obtain a closed system of equations 
describing the deformation of a multicomponent CM whose boundary conditions are that there 
are no fluctuations in the value of the quantities on the surface S of the volume V 

f wj,,,q = <f> 
Using Green's tensor 
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we can reduce the above system of equations to a system of integral equations of equilibrium 
/l/ 

(the primes denote the fluctuations in the quantities over the whole volume V of the CM). 
In order to find the effective constants of the CM in question, we must establish the 

relation connecting the macroscopic stresses and deformations. Let us average (1.2) over the 
whose volume V of the body, and apply the rule of mechanical mixing of phases 

fSij> = i CQ (2& <Eij>Q -t8$* <f&J - 5 2&C, <eijP>s @.4) 
*=1 s=1 

where c,= <x8)= V,V-l are the volume contents of the components. Eq.(1.4) shows that in order 
to establish the rheological macroscopic law we must calculate the deformations averaged over 
the component volumes. The quantities teii& can be found from the well-known relations /3/ 

<Eij>. = <Eii> + c;l <M*$/> (1.5) 

Let us calculate the quantities <Xq'Ei+'> (q= 1, 2, . . ., n), restricting ourselves to the singular 
approximation /l, 2/. We multiply Eq.(1.4) by x~'(c) and average it over the whole volume V 

Neglecting, in accordance with the hypothesis of singular approximation, the formal parts 
ofthesecond derivatives of Green's tensor, we obtain /l/ 

Separating from this relation the deviator and volume parts, we obtain 

Eliminating the quantities <xq'aij'> from the equations (1.4), (1.6) and taking into account 
the relations 

we obtain 

( <Sij> 

<c~,>~= (i-a)(eil~+am,<c,,p>,~az- (1+s(m,-1))" (P) ) 

Qpp>a= (l--)tep,,tr~)(i-l-r(n.--l))-' ( 
4 1+tv> & -- 

y=3 f-<v>' =% =o 

('1.7) 

Substituting relations (1.7) into (1.4) and separating the resulting expression into 
the deviator and volume parts, we obtain the macroscopic Hooke's law fox the CM under considera- 
tion 
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(1.8) 

._ 

<b) = c1 1 i 
crbs* a,= 1+ fy, (ma - i) 1 

a=1 
b,= 1SY b&-1) 

Here pl*,K* are the effective shear and bulk moduli, and e+j* axe the components of the 
residual deformation tensor of the CM, which are measured after the external loads have been 
removed from the surface of the body. They are connected with the plastic deformations 
averaged over the component volumes by the relations 

m 

'iJ 
*_-LE- 

p* <a> c c,mdas leiJP)d 
a=1 

(1.9) 

The expressions for the effective moduli of elasticity appearing in Booke's law are the 
same as thi? well-known formulas of the singular approximation in the theory of elasticity of 
microinhomogeneous multicomponent media /2/. 

2. Let us consider the macroscopic behaviour of a multicomponent CM beyond the elastic 
limit. To be specific, we shall assume without loss of generality, that the material. of the 
first component becomes plastic first, then that of the second component, etc., up to and 
including the m-th component. Let the plastic flow develop in the first stage within the 
volume V, only. Averaging the local yield surface over the volume VI of the first component 
and using the condition that the square of the mean is always less than the mean of the square, 
we obtain an upper estimate for the yield surface within the volume t'l/l/ 

Oi ,h<Stl>'Qw (2-f) 

Using Hooke's law for the first component to eliminate the components of the stress tensor 
deviator 8iJ from (2.1)) we obtain 

4~19 <c~~-c~$')I (ei,-eijP),< kt (2.2) 

Substituting the formulas (1.7)-(1.9) into inequality (2.2) f we obtain an upper estimate 
for the macroscopic load surface 

*e ((sij>-rNleij*)f<~ij) -NLe{ J*)<$ 

and the associated rule of flow corresponding to this surface 

@a* is the effective yield point and N1 is the coefficient of linear kinematic hardening). 
In this case Eq.(1.9) takes the form 

CC$> ==hlCij, hi-L.Stlm~ 

Relation (2.3) represents 
kinematic hardening. 

the law governing the flow of a plastic body with linear 

The macroscopic behaviour of the CM will correspond to Eq.(2.3) until the second component 
reaches its critical state in which plastic deformations have not yet occurred, but the 
stresses already obey the Mises yield conditions. The upper estimates for this state will be 
given by the conditions 

(S+<Q)S< k?, $p>, = 0 (2.4) 

Substituting into the first condition of (2.4) Hooke's law for the second component and 
the formulas (1.7)-f1.91, we obtain 

The intersection of the load surface with the surface (2. 5) in six-dimensional macrostress 
space, yields the values af the residual deformation c@ and the macroscopic stresses ,j r!I) 

determining the limits of the correspondence 
macroscopic behaviour of the CM 

between the associated law of flow (2.3) and the 
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Let us consider the next deformation stage, when the plastic flow develops in the first, 
as well as the second phase, and the remaining components remain perfectly elastic. Let us 
average simultaneously the local yield surfaces over the volumes of the first and second 
components I^,, V,, and use Hooke's law 

4~9~(eij-eijl"n(eij-eii~)9~kP~ (q=1,2) (2.7) 

Substituting the formulas (1.7)-(1.9) into the inequalities (2.7) and using the rule of 
mixtures, we obtain the upper estimate for the macroscopic load surface for which the correspond- 
ing associated law of flow has the form 

(2.8) 

a (cw {a)$‘, 

(the braces denote averaging of the quantities over the set of component volumes). Substituting 
the inequality 

<ei j”> < bei f, 12.9) 

(no summation over i,j 1 into Eq.(2.8), strengthens theupper estimate of the macroscopic 
behaviour of the CM. Eliminating the quantities (e@) and &from the formulas (2.6), (2.8) 
and (2.9), we obtain ._ 

(si j> = kz (2.10) 

The values of the residual deformations 02) and macrostresses a$) determining the bound- 
aries of the correspondence between the effective behaviour of the CM and Eq.(2.10), are found 
from the condition analogous to the inequality (2.4) 

and are equal to 

(2.11) 

k&$n;1 - ka’ 

qa= N*+zp*(1--a)<a) 

Repeating the previous arguments, we can obtain the law governing the deformation of the 

CM for the case when the third, fourth, etc. component becomes plastic. In the general case, 

when the plastic flow develops in the firstq(q<m) components, the upper estimate for the 

effective law of flow in the CM has the form 

The boundaries of the correspondence between Eq.(2.12) and the macroscopic behaviour of 
the CM are given by the expressions 

(2.13) 

Thus the behaviour of the CM beyond the elastic limit is estimated from above by the law 
of flow of a plastic body with the kinematic, piecewise linear hardening. When n= Z,m= 1, 
the general formulas (2.12) are identical with the analogous results for the two-component 
media obtained in /l/. 

3. In order to apply the above scheme for determining the properties of the CM in 
practice, we must know in what order the components of the CM pass to the plastic state. Let 

us establishthedependence of this order on the mechanical constants of the component materials 
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and their volume contents. We will consider two arbitrary volumes Vp.Vq which are in the 
elastic state. We introduce the quantity 

(3.1) 

It is clear that if App>O, then the plastic flow will first occur in vq, while when 
Apa<O, plastic deformations will first appear in the volume VP. The condition App= 0 means 
that both components become plastic simultaneously (condition of equiplasticity) /4/. 

Let us express A,, in terms of the macroscopic stresses and residual deformations. 
Since there are no plastic deformations within the volumes VP, Vn, it follows that 

<sijsij>* = 4P*~(eijeij>r (s=P* n) (3.3) 

We determine the quantity <eijeij>, by multiplying (1.3) by x,'(r)eij(r) and averaging the 
results over the total volume V of the composite material_ Applying totheintegral obtained 
the hypothesis of singular approximation and carrying out calculations analogous to those 
used in deriving Eq.cl.61, we obtain 

&jcjJ 

‘eiJeiJ)s = [1 + cz (me - l)]a (3.3) 

&+ =(& +*)<sij> + (l --a) eij* 

Substituting (3.2), 13.3) into (3.1), we find that if 

b I 
kp(i-l-a(m,---i)) I 

then the plastic flow will first begin within the volume V,. The equality corresponds to the 
condition that plastic flow occurs in the materials of both components simultaneously. 

Expanding the quantities 

I p* 
ksO+u(m,--l)f I (s=P,2,...,?@ 

in the order in which they decrease, we obtain the order in which the component materials 
become plastic. 
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